59

Towards Behavioral Reflexion Models

Christopher Ackermann, Mikael Lindvall, Rance Cleaveland
Fraunhofer USA — Center for Experimental Software Engineering
College Park, MD, USA
{cackermann, mlindvall, rcleaveland } @fc-md.umd.edu

Abstract— Software architecture has become essential in the
struggle to manage today’s increasingly large and complex
systems. Software architecture views are created to capture
important system characteristics on an abstract and, thus,
comprehensible level. As the system is implemented and later
maintained, it often deviates from the original design
specification. Such deviations can have implication for the quality
of the system, such as reliability, security, and maintainability.
Software architecture compliance checking approaches, such as
the reflexion model technique, have been proposed to address this
issue by comparing the implementation to a model of the systems’
architecture design. However, architecture compliance checking
approaches focus solely on structural characteristics and ignore
behavioral conformance. This is especially an issue in Systems-of-
Systems. Systems-of-Systems (SoS) are decompositions of large
systems, into smaller systems for the sake of flexibility. Deviations
of the implementation to its behavioral design often reduce the
reliability of the entire SoS. An approach is needed that supports
the reasoning about behavioral conformance on architecture
level.

In order to address this issue, we have developed an approach
for comparing the implementation of a SoS to an architecture
model of its behavioral design. The approach follows the idea of
reflexion models and adopts it to support the compliance checking
of behaviors. In this paper, we focus on sequencing properties as
they play an important role in many SoS. Sequencing deviations
potentially have a severe impact on the SoS’ correctness and
qualities. The desired behavioral specification is defined in UML
sequence diagram notation and behaviors are extracted from the
SoS implementation. The behaviors are then mapped to the model
of the desired behavior and the two are compared. Finally, a
reflexion model is constructed that shows the deviations between
behavioral design and implementation. This paper discusses the
approach and shows how it can be applied to investigate
reliability issues in SoS.

Software engineering; software reliability; behavioral analysis;
program comprehension; behavior verification

I. INTRODUCTION

OFTWARE architecture has become an essential part of

the development and maintenance process of today’s
systems. The increasing size and complexity must be managed
with appropriate abstractions that help focus on important
system characteristics and hide implementation details. Views
of software architecture not only facilitate comprehension of
systems in general but have concrete benefits as they allow

conducting analyses of software qualities (e.g., reliability,
security, etc.), support the assessment of change impact, and
guide the developer in implementing changes [14]. However,
architecture documentation can only serve its purpose if it
accurately reflects the state of the system. Unfortunately,
architecture documentation and the implementation (i.e. the
source code) coexist independently from each other. This leads
to situations in which the implementation evolves, while the
architecture documentation remains unaltered. The result is
outdated and irrelevant architecture documentation [10]. An
implementation that does not adhere to its design may not
fulfill the software qualities it was designed to meet.
Architecture compliance checking has been proposed as a
means to remedy that issue. The first and most influential
compliance checking approach was proposed by Murphy et al.
[12]. In the so-called reflexion model approach, a system
implementation is compared to a high-level model of the
system’s structural design. The result is a new model, the
reflexion model, which illustrates how the implementation
deviates from the high-level model. The system architect can
then re-establish conformance of the implementation to the
design. The reflexion model approach has been implemented
in several tools [9] and has been applied with great success to
a variety of systems. A major drawback current architecture
compliance checking approaches suffer is that they are limited
to evaluating structural properties. At the same time,
behavioral properties are crucial for a system to achieve its
reliability, security, performance, etc.

This is most critical in systems-of-systems. Systems-of-
Systems (SoS) are distributed systems that act to a large extent
autonomously but collaborate with each other to fulfill a
common task [11]. Problems in the interaction between
systems can reduce the performance and reliability of the
entire SoS. At the same time, few methods exist to analyze
interaction behaviors and their adherence to the design
specification.

This paper presents a reflexion model approach for
checking the compliance of an implementation’s behaviors to a
model of the desired behavior. In that approach, the SoS is
executed and the behaviors are monitored. The user specifies a
high-level model in sequence diagram notation that expresses
constraints on the sequencing of messages. The behaviors are
then compared to the desired behavior and deviations are
identified. Finally, reflexion models are produced that
illustrate the deviations graphically. While we will focus on
the evaluation of behaviors in SoS, the approach can also be

59

applied to system-internal interaction behaviors.

The remainder of this paper is organized as follows. Section
2 introduces the basic terminology and provides background
about compliance checking with reflexion models. Section 3
then discusses our approach in detail. Section 4 presents a case
in which we applied our approach to a real-world SoS. Related
work is addressed in section 5 before concluding the paper
with section 6.

II. BACKGROUND

A. Reflexion Models

The reflexion model approach was motivated by the fact
that models that were used by system architects to reason
about the system were not consistent with the implementation.
The models are simple box and line drawings, where boxes
represent components and lines dependencies between them.
Each component represents one or more source code units
(e.g., class, method, etc.). The dependencies indicate how the
components are related. The goal of the reflexion model
technique is to compare the source code dependencies to the
dependencies in the high-level model and illustrate deviations
between the two. Before the comparison can be conducted,
source code units must be manually mapped to the component
in the high-level model that represents them. The dependencies
are then compared automatically and deviations are detected.
A deviation is either a divergence or an absence. Absences
illustrate dependencies that are present in the high-level model
but are missing in the implementation. Conversely,
divergences are dependencies that are in the implementation
but do not exist in the high-level model.

1
1
I

!
i

16

R i . o

1
1
!
!
1
I

[75
Figure 1: Structural reflexion model as illustrated by
Murphy et al. [12].

In order to employ the reflexion model approach for
architecture compliance checking, the architecture is specified
as a high-level model and the implementation is checked

against it. The graphical representation of the deviations in the
reflexion model allows the system architect to reason about
deviations in the context of the entire structure.

B. Behavioral Reflexion Models

We propose to adopt the reflexion model approach for the
context of behavioral analysis. More specifically, we aim to
check the adherence of an implementations’ interaction
behavior to a model that describes the desired behavior.
Systems in a SoS interact by exchanging messages, which may
contain data or control signals. Data messages are containers
to transport data from one physical location to another. Via
control messages, the sending system seeks to trigger a certain
action in the receiving system.

In order for the systems to collaborate as desired,
sequencing rules are specified that describe how the systems
should interact with each other. Such sequencing rules can be
specified in notations such as Finite State Machines,
Propositional Logic, and sequence diagrams. The nature of a
sequencing specification is that it describes not a single
behavior but the set (or a subset) of all valid behaviors. A
behavior is valid if it adheres to the specified rules. For the
purpose of this work, we will focus on sequencing rules that
are specified in the UML sequence diagram notation as
illustrated in Figure 2. A sequence diagram illustrates the
components that interact as boxes and messages that are
exchanged between these components as arrows. More
advanced sequencing patterns are used to describe variability
in the behavior. Loops indicate the repetition of a sequencing
pattern. Alternative constructs express that a behavior may
exhibit different sequencing patterns. Sequence diagrams are
hierarchical as a loop and alternative construct may contain
other constructs.

Figure 2: Example sequence diagram.

In our reflexion model approach, we are aiming to compare
behaviors that are exhibited by a SoS implementation to a
high-level model that describes the valid sequences in
sequence diagram notation. The result of the comparison is a
reflexion model that illustrates the deviations between the
behavior and the high-level model graphically. The purpose of
a reflexion model is not to merely indicate whether a behavior
adheres to a given specification, but rather to provide
information about the degree to which the two match and how
they deviate. The graphical representation of the deviations in
the context of the entire behavior should facilitate
comprehension and support the user in resolving the issues.

III. APPROACH

Our approach follows the basic idea and the steps of the
original reflexion model approach (see Figure 3). A high-level
model is created by the user and the information about the
implementation is collected. The implementation information
is then mapped to the high-level model. Subsequently, the
deviations between implementation and high-level model are
computed. Finally, reflexion models are constructed that
illustrate their deviations.

Behaviors *

High-Level Model
Spegify
- -

N

Behavior
Extraction

.4—

Creating
Refiexion
Models

Refiexion Models

Figure 3: Process overview for computing behavioral
reflexion models.

The high-level model is specified in sequence diagram
notation and captures the ordering of messages. The
implementation information is a set of behaviors that are
observed when executing the SoS. The behaviors are
individually mapped to the high-level model. More
specifically, messages in the behaviors are mapped to
messages in the high-level model. Deviations that indicate
where and how the ordering of messages is not consistent in
the behavior and the high-level model are collected. The
collected deviations are then used to construct reflexion
models. We distinguish three types of reflexion models that
illuminate deviations of all behaviors combined and individual
behaviors. Furthermore, we describe a process for employing
the different reflexion models for analyses of SoS interaction
behaviors.

A. Recording Behavior

The behavior is recorded by executing the SoS and
monitoring its interactions. We have presented an approach in
which behaviors can be retrieved by observing the physical
communication channels between systems [2]. So-called
observation points are placed at the endpoints of each
communication channel (i.e., at each system) in order to
monitor the sending and receiving of messages traveling on

these channels.

l:| System

Communication
Channel
Observation
Point

Figure 4: Conceptual view of a SoS.

Figure 4 shows the conceptual setup of a SoS architecture.
The boxes represent systems, which are connected by lines
indicating communication channels. The dots are the
observation points through which the physical interactions can
be monitored. Then, the actual behavior model (in terms of
message sequences) is constructed based on the observations.

B. Mapping

The mapping establishes a connection between the
information extracted from the implementation and the high-
level model. In the structural reflexion model approach, source
code units are mapped to high-level components. In our
approach, we establish the connection by mapping messages of
the observed behavior to messages in the high-level model.
Hereafter we will refer to the former as concrete message and
the latter as high-level message. The high-level model
describes constraints on the ordering of messages in the
behaviors. The mapping is used to identify what message in
high-level model represents a concrete message. For instance,
Figure 5 shows a high-level model (left) and a behavior (right).
The first message in the behavior is of type a. The high-level
mode] also has a message of type a in the beginning of the
sequence. Thus, the first messages of the behavior and the
high-level model can be mapped to each other as indicated by
the gray shading. The example also illustrates that a high-level
message that appears in a loop may have more than one
concrete messages mapped to it (e.g., message b). A high-level
message that appears in an alternative construct does not have
a concrete message mapped to it for every behavior (e.g.
message d). Also, a high-level model may specify that a
message of a certain type may appear more than once (e.g.
message a).

In the structural approach, the mapping is a manual activity
in which the user selects the source code units and maps them
to a high-level component. When mapping behaviors to high-
level model, a manual approach is not practical as the
behaviors often consist of a vast number of messages. We
have, therefore, developed a method to automatically map
concrete messages to high-level messages.

First, we must establish a set of mapping rules. A concrete
message is always mapped to a high-level message of the same
type. A high-level message may only have a single concrete
message mapped to it unless it appears in a loop. In that case,
multiple messages may be mapped to the high-level message
(as many as there are loop iterations). A concrete message may
only be mapped to a single high-level message.

A simple mapping by message type is not possible as the

59

high-level model may specify more than one high-level
messages of the same type (illustrated by message a in Figure
5). The context in which the message appears is taken into
account as an additional mapping criterion. The context refers
to where in the sequence the message appears. We can now
refine the mapping rules by stating that a concrete message
may only be mapped to a high-level message of the same type,
which appears in the same context.

sd [sd |/
[X] LY] [X | LY]
a a
b
loop b b
J b
[alt c ¢
d
a a

Figure 5: Concrete messages in the diagram on the right
are mapped to high-level messages in the diagram on the
left.

A possible mapping strategy could be to “execute” the high-
level sequence diagram model with the observed behavior
similar to executing a Finite State Machine (FSM). The
concrete messages are consumed while traversing through the
sequence diagram and the mapping is established. Such a
mapping is, however, only possible if the observed behavior is
“accepted” by the sequence diagram. That is, it is applicable
only to sequences of concrete messages that adhere to the
sequencing rules described in the high-level model. Such an
assumption is, of course, not desirable as the purpose of our
approach is to identify deviations in behaviors that violate the
ordering specified high-level model.

1) Approximate Mapping

In order to solve the mapping issue, we turn to the area of
biosequence analysis in which approximate matching methods
are employed to identify DNA strands that are similar to each
other [7]. DNA strands are represented as sequences of
characters (i.e., strings). The traditional approximate matching
algorithm tries to find the best alignment between two strings
such that the cost of the alignment is minimal. The cost is
generally computed via a cost function. A simple cost function
is the edit-distance that simply counts the number of edits that
are necessary to align the sequences. More elaborate cost
functions can assign specific costs for certain matching
operations. An example for the approximate matching of two
strings is illustrated in Figure 6.

5o q a ¢ _ d b d

s, 9 a w x _ b _

Figure 6: Example for approximate matching of two
strings.

Characters in s, that match characters in s; are aligned with
each other. If characters cannot be aligned, the algorithm uses
one of three operations: inserting a gap (indicated by “_”) in
5o, inserting a gap in s;, or mismatching the characters.
Assuming that matching two characters has a cost of O,
inserting a gap has a cost of 1, and mismatching characters has
a cost of 2, the total cost for the example alignment amounts to
5

An extension to the traditional approximate matching idea
has been presented by Myers et al. [13]. Instead of matching
two sequences, they propose an approach to match a sequence
of characters to a regular expression. The algorithm follows
three basic steps: model construction, cost computation, and
solution discovery.

Construction. The regular expression is first converted to a
Finite State Machine (FSM), which is then replicated one time
more than there are characters in the string. Then, the replica
FSMs are connected via transitions as specified in the
construction algorithm. Figure 9 illustrates the result of that
construction procedure. After the model has been constructed,
it accepts strings that are not covered by the regular
expression, allowing for deviations.

Cost Computation. Starting at the source (the start state),
the cost for each state is computed by adding the cost of the
preceding state and the cost of the transition. If there are
multiple states transitioning into a state, the preceding state is
chosen that results in the lowest cost for the current state. After
this procedure, the cost of the sink state (i.e., the last state)
represents the cost of the best alignment between string and
regular expression.

Solution Discovery. In order to identify an actual optimal
alignment, the FSM model must be traced back from the sink
to the source state. A trace-back procedure is not described by
Myers et al. [13] but we will describe such a procedure in the
next sections.

We have modified the approximate matching algorithm in
order to conduct the mapping of concrete messages to high-
level messages. More specifically, the high-level model is
converted into a regular expression where the symbols are
high-level messages and the input string is a behavior (i.e., a
sequence of concrete messages). The algorithm is modified so
it not only aligns each concrete message with a high-level
message but maps them to each other. The following describes
how the sequence diagram is converted to a regular expression
and how the original algorithm is modified to conduct the
mapping.

2) Model Translation
The sequence diagrams we consider for the scope of this work
are limited to sequencing, loop, and alternative constructs.
Sequencing expresses the succession of messages. Loops
specify a repetition of a sequence pattern. Alternatives indicate
that there are two alternate sequence patterns that may occur.
In order to produce regular expressions from sequence
diagrams, sequence diagram constructs are converted into
regular expression constructs. Regular expressions put

59

operators to our disposal that express the same semantics as
the sequence diagram constructs. In a regular expression, the
succession of symbols is expressed via the concatenation
operator (a.b), loops via Kleene star (a*), and alternatives via
unions (a+b). Table 1 illustrates the mapping between the two
notations.

Table 1: Mapping of sequence diagram (SD) constructs to

elements in regular expression (RE) notation.
SD RE
. a
Concatenation b ab
: loo|
Kleene star a a*
T
! alt |
. a
Union ; a+b

Converting a sequence diagram to a regular expression is
now a matter of parsing the sequence diagram and converting
each sequence diagram element into the respective regular
expression element. Instead of symbols, the regular expression
will contain high-level messages. For instance, the characters a
and b in Table 1 represent high-level messages of that type.

3) Modifications

In order to adopt the approximate matching algorithm by
Myers et al. [13], several modifications must be applied to the
construction procedure.

First, instead of comparing characters, the algorithm must
be adjusted to compare and match concrete messages to high-
level messages. We have discussed earlier that a concrete
message can only be mapped to a high-level message of the
same type. Consequently, the matching criterion is the type of
the messages. A match occurs if the concrete message and the
high-level message are of the same type.

Furthermore, the possibility in the algorithm to align
unequal symbols must be removed. In traditional applications
of approximate matching, it is useful to mismatch symbols.
However, a mismatch in our case would violate the mapping
criterion in which we stated that the concrete message and
high-level message must be of the same type. We adjust the
algorithm by removing (or not inserting) substation edges in
which two unequal symbols are aligned with each other.
Without these substitution edges, no alignment is produced
that requires a mismatch.

Also, the operation of matching must be extended to a
mapping operation. That is, when a concrete message is
matched with a high-level message, a pointer is set from the
concrete message to its high-level counterpart and the high-
level message is updated with a reference to the concrete
message. The references between the high-level and concrete
messages are useful when using the reflexion model for
analysis as will be explained later.

In addition, a cost function must be defined as Myers et al.
[13] did not propose one. We defined the cost function that

assigns a cost of 1 to gaps in either the high-level model or the
behavior and 0 to matching alignments.

Finally, Myers et al. do not suggest a method for identifying
the optimal alignment after the model has been constructed.
Thus, we extended the algorithm to identify the mapping that
leads to an optimal alignment of high-level and concrete
messages. We adopted the approach that is used in many
dynamic programming approaches in which pointers are set to
the table cell from which the cost for the current cell was
computed. To each state, we add a pointer and set the pointers
when constructing the FSM model. In order to determine the
optimal alignment, one starts at the sink state and follows the
pointers of each state to the source state.

C. Sequence Checking

The goal of sequence checking is not only to provide a
yes/not-sure answer regarding the adherence of the message
sequence to the high-level model, but rather to produce a
model that graphically illustrates the deviation: a reflexion
model. A behavior may deviate from the sequencing
specification of the behavioral design by omissions and
additions. An omission occurs if the high-level model specifies
a message that is not present in the behavior. Additions are
messages that are part of the behavior but are not specified as
part of the behavioral design.

Such deviations occur if the behavior does not adhere to the
sequencing rules. The sequencing rules are used to describe all
valid behaviors. Deviations must be described in respect to a
valid solution. That is, first the solution to which to compare
the invalid behavior must be identified. Then, the deviations
can be determined. One could compare the behavior to any
valid solution. However, depending on the similarity of the
valid solution to the behavior, the number of deviations varies.
A common approach is to find the solution that is closest to the
invalid behavior. Closeness can be determined by the number
of editing operations that are necessary to derive one behavior
from the other.

During the trace-back of the mapping procedure, the best
alignment between high-level model and behavior is identified.
This also implicitly detects the closest valid behavior and even
the deviations between the observed and the valid behavior. In
the traditional approximate matching algorithm, deviations are
expressed in terms of gaps that are inserted in either the high-
level model or the behavior. A gap is inserted in the high-level
model] if a message occurs in the behavior that cannot be
matched with a high-level message. This is what we have
defined to be an addition. Likewise, if a gap is inserted into the
behavior, an omission is detected. In order to identify
omissions and additions, the approximate matching algorithm
is extended once more. Instead of inserting a gap into the
alignment, a deviation record is produced that captures
information about the deviation:

<behvr, pos_design, pos_behvr, msg, dev_type>

A deviation record contains a reference to the behavior that

59

contains the deviating message (behvr). It stores the position in
the design in which the deviation occurred (pos_design) and
the position in the behavior (pos_behvr). Furthermore, it
contains the message that caused the deviation (msg) and the
type of the deviation (dev_type). Depending on the type of
deviation, the message is either a concrete or a high-level
message. If the deviation is an addition, a reference to the
concrete message that could not be mapped to a high-level
message is recorded. Conversely, if the deviation captures an
addition, the high-level message is referenced.

The following shows an example for a FSM model that is
constructed based on a high-level model (Figure 7) and a
behavior (Figure 8).

(B] [A] [B]
alt |
a , a
b b
a)
Figure 7: Example high- Figure 8: Example
level model. behavior.

Figure 9 illustrates the FSM model that is constructed based
on the high-level model and the behavior above. The high-
level model is first converted into a regular expression. The
resulting expression is (a+b)a. Then, the regular expression is
converted into a single FSM, which is subsequently replicated
two times and transitions are inserted to connect the different
levels of the FSM model (indicated by dashed lines).

Conformance @
Addition ®
Omission ¥

Figure 9: Example for matching the string ab to the
regular expression (a+b)a.

The model in Figure 9 shows the transitions annotated with
deviation types. When tracing back from the sink state to the
source state, one can identify the alignment and produce the
deviation records based on the deviation types that are

encountered.

D. Reflexion Models

The reflexion model is a graphical representation of the
deviations between the implementation and the high-level
model. In the structural reflexion model approach,
inconsistencies in the dependencies of the source code and the
high-level model are highlighted in the high-level model (see
Figure 1). While in the structural reflexion model approach,
the implementation is represented by the source code, in our
approach the implementation is represented by a set of
observed behaviors. The following will define reflexion
models to analyze individual behaviors and to explore the
deviations of all behaviors combined. We will refer to the
former as behavior reflexion model and the latter as high-level
reflexion model. We will illustrate the different reflexion
models on an example. Figure 10 shows a high-level model
and Figure 11 illustrates three behaviors that were observed
from executing the SoS. The following example reflexion
models highlight deviations between the behaviors and the
high-level model.

(sd]

LY]
=]
[att c

d
e

Figure 10: Example high-level model.

[sd / [sd / [sd /
X a Y X a Y X a Y
k b b
b b b
X b b
c y z
e c d

Figure 11: Example behaviors.

1) Behavior Reflexion Model

Behavior reflexion models view the conformance of a single
behavior to the high-level model. To construct the reflexion
mode]l of a single behavior, the sequence diagram can be
plotted to illustrate the original sequence of messages.
Subsequently, the view is updated to highlight the deviations
to the high-level model. To illustrate additions, the respective
message is annotated with an exclamation mark and colored in
red. Messages are added to the diagram to visualize omissions
in the behavior. An omission is annotated with a red cross and
also drawn in red color. If multiple messages were omitted in
the behavior, they are drawn in the sequence in the same order

59

as they appear in the high-level model. Figure 12 shows
examples for a behavior reflexion model.

[sd] [sd] [sd]
o, ™| o, 0O =@, O™
k ® b b
b b b
X b b
c \' @ Z :CD

e c d
e »5¢ e » 3¢

Figure 12: Basic reflexion model of each behavior.

2) High-Level View of Behavior Reflexion Model

The drawback of illustrating the deviations in the original
sequence of messages is that it does not show the structure of
the high-level model. Thus, an additional behavior reflexion
model is constructed that illustrates the deviation of a single
behavior from the perspective of the high-level model. The
model is constructed in the same way as the high-level
reflexion model, which is described next. Figure 13 illustrates
examples for a high-level view of a behavior reflexion model.

sd] sd / sd [
X Y Y Y
a a a
k) ® [loop b [loop b
loop b Y1) Ji) Z() (L)
X(1) D [alt c [alt c
| alt c d d
d
e % e LY

Figure 13: Reflexion model showing the behaviors from a
high-level perspective.

3) High-Level Reflexion Model

The purpose of the high-level reflexion model is to view all
combined behaviors from the perspective of the high-level
model. The sequence diagram of the high-level model is first
drawn without deviations and then updated to show the
omissions and additions. Omissions are again rendered in red
color and annotated with an exclamation mark. Additions are
drawn below the high-level message that is specified in the
deviation record. If multiple deviations were recorded for a
high-level message, they are merged into a single message
arrow, which is labeled with the types of all messages that are
part of a deviation. Also, each message is annotated with the
number of deviations that were merged. An example high-level
reflexion model is depicted in Figure 14.

4) Process

The behavior reflexion model (Figure 12) illustrates the
deviations of a single behavior, where the behavior is rendered
as a simple sequence of messages. The behavior reflexion
models shown in Figure 13 also highlight the deviations of a
single behavior but illustrate them in the context of the high-
level model. Finally, Figure 14 illustrates the high-level

reflexion model in which the deviations of all recorded
behaviors are combined.

[[sd /
ES [Y]
a
k1 i ®
oo/ b
xalymlzoy | y
[alt c
)
d 14
e(1) %

Figure 14: High-level reflexion model showing the
deviations of all behaviors.

When analyzing the deviations between high-level model
and implementation, one can use the high-level model for a
qualitative assessment as to how well the implementation
adheres to the high-level model. In order to investigate specific
deviations, the user can make use of a reflexion model that
shows only the deviations of a single behavior. The high-level
perspective represents the deviations in a concise manner but
does not reveal all details. For instance, it does not show the
sequence of merged messages, etc. To derive even more
details, the user can make use of the basic behavior reflexion
model, which illustrates the behavior as a sequence of
messages but without information about sequencing patterns
(i-e. loops and alternatives) contained in the high-level model.
By applying a combination of the different types of reflexion
models, one can quickly derive a general understanding of the
quality of the match and then reveal more details.

IV. CASE STUDY

The following describes two case studies that illustrate the
application of behavioral reflexion models for real-world SoS’.
In particular, the case studies aim to answer the following
questions:;

¢ How can reflexion models be used for analyzing
behaviors?

¢ What issues can be analyzed using reflexion
models?

We have discussed the different reflexion models and a
process for analyzing SoS’ using these models. The case study
will show concrete applications of that process. Also, the
described analyses were conducted to resolve concrete issues.
We will discuss the analysis results to provide insight into
these issues.

A. MOC - Client Interaction

The Johns Hopkins University Applied Physics Laboratory
(JHU/APL) Space Department develops Mission Operations
Center (MOC) system software using a shared architecture
called Common Ground for JHU/APL-supported NASA
missions. APL's NASA missions use the CGS for spacecraft
Integration and Test (I&T) and operations. The software is

59

currently supporting I&T and operations for three deep space

missions: MESSENGER (discovery.nasa.gov), STEREO
(stprobes.gsfc.nasa.gov), and New Horizons
(www.nasa.gov/mission_pages). The Mission Operation

Center (MOC) acts as control center for satellites in orbit and
as permanent storage for telemetry data that is captured in
space and transmitted to ground. The MOC is also the hub for
client systems that access the stored telemetry data. While the
MOC is developed at JHU/APL, the client systems are
developed and maintained by other organizations.
1) High-Level Model

The protocol that was used by the MOC and the clients to

communicate was documented in the SoS specification.

sd

moc

F”" Filter ‘

BeginPlayback

’pr Data ‘

EOT

ClientClose

ServerClose

Figure 15: High-level model specifying the design of the
MOC-client interaction.

2) Compliance Checking
The system architects monitored the systems via TCP ports
and recorded the physical communication using UNIX Snoop
at the MOC. The captured information was processed to
construct 9 behavioral traces. A FSM was constructed to map
each behavior to the high-level model and the deviations for
all behaviors were collected.
[sd]
Moc

F°°” Filter

BeginPlayback

| loop Data

Filter (1)

EOT (3) I3

ClientClose (1)
ServerClose

5% ClientClose (1)

Figure 16: High-level reflexion model of MOC-client
interaction.

3) Results

The high-level reflexion model that resulted from
comparing all 9 behaviors to the high-level model is illustrated
in Figure 16. The reflexion model shows that the behaviors
deviate in two ways from the high-level model. First, a Filter
message is exchanged after a Data message has already been
sent. Second, the EOT message did not occur in all traces. The
high-level reflexion model allows for a qualitative analysis of
how well the behaviors match the high-level model. The

diagram shows that the behaviors contain many sequencing
violations. None of these deviations occur during the exchange
of Filter and BeginPlayback message but towards the end of
the transaction.

In order to further investigate the nature of these deviations,
the behaviors can be illustrated individually through a
behavior reflexion model. We want to first analyze the
addition of a Filter message. The question that arises is
whether the deviation is an isolated incident or occurs in the
context of other deviations. This cannot be answered with the
high-level reflexion model as it shows the deviations of all
behaviors in a single diagram. Since every deviation contains a
reference to the message that caused the deviation, we can
determine that the unexpected Filter message was part of trace
2.

sd sd
MOoC client MOC
Filter
loop Filter
Filter
BeginPlayback BeginPlayback
Data
loo,
d Data Data
@ Filter (6) Filter
Data
EOT
Data
ClientClose EOT
ClientClose
ServerClose ServerClose
Figure 17: High-level Figure 18: Behavior

perspective of behavior
reflexion model for trace 2.

perspective of behavior
reflexion model for trace 2.

Figure 17 shows a high-level view of the behaviors captured
in trace 2 along with the deviations. The diagram illustrates
that the only deviation in trace 2 is an unexpected Filter
message following a Data message. The diagram does not
reveal, however, where exactly the message occurs. Since it is
enclosed in a loop, it could occur in between Data messages or
in between the last Data and the EOT message. The behavior
perspective of the reflexion model depicts these details. The
mode] is illustrated in Figure 19. Due to space reasons,
repetitions of Filter and Data messages were omitted as
indicated by the slash marks. The model illustrates that the
Filter message occurred in between Data messages. We can,
therefore, conclude that that deviation was not caused by a
previous problem but is due to an error in the client system.

The EOT message in the high-level reflexion model is
marked with omissions. To investigate the omissions further,
we can analyze the behavior reflexion models of the traces in
which the deviations occurred. One of the three deviations that
are represented by the EOT message arrow refers to trace 7.
Figure 20 shows the high-level view of the behavior reflexion
model. It illustrates that the EOT omission is not the only
deviation in that behavior. Both the addition of the ClientClose
and the omission of the ServerClose message appear in the
same trace.

[sd] [sd J
MOC MOC
‘ Filter ’»Ioop Filter
Filter
BeginPlayback BeginPlayback
Data ’»Ioop 7 Data ‘
Data . Eotm o
EOT
ClientClose ClientClose (1)
ServerClose ServerClose
% ClientClose (1)
Figure 19: Behavior - -
. Figure 20: Behavior
reflexion model.

After sending BeginPlayback and receiving Data messages,
the client sends a ClientClose message, not waiting for the
EOT message. The MOC reacts to this misbehavior by sending
a ServerClose message.

B. Satellite-MOC Interaction

The satellite that continuously captures telemetry data,
transfers the captured information to the MOC every time it is
within reach. The data is transferred using the file transfer
protocol CFDP [5]. Figure 21 shows the behavioral design of
the protocol. The Metadata message specifies the size of the
file, the filename and so on. The satellite then starts sending
messages and an EOT when all data has been transmitted. The
MOC responds by sending an acknowledgement message for
the EOT. If some of the data was lost during transmission, the
client can query the satellite for re-transmission (NAK) upon
which the satellite must respond with at least one FileData
messages. Once all data has arrived at the MOC, it sends a
Finished message, which is acknowledged by the satellite.

sd sd
[e]e]
Metadata l_g—s_| Metadata ’E‘
[[
F% Filedata ‘ FM Filedata
EOF EOF
Ack(EOF) Ack(EOF)
[loop NAK [loop / NAK
Filedata Filedata (4) 5
F"" Filedata ‘ F“’ Filedata
FIN FIN
Ack(FIN) Ack(FIN)
Figure 21: High-level Figure 22: High-level
model of CFDP protocol. reflexion model.

The interaction was monitored during the normal operation
of the SoS. A total of 154 behavior traces were recorded (with
a total of 88,309 messages) were recorded. We applied our
approach to compare the behaviors to the high-level model and
produce a high-level reflexion model as illustrated in Figure
22,

The majority of the behaviors adhered to the high-level
model. The only deviation was that in response to a NAK
message, the satellite would not always respond with a

FileData message. That means the request by the MOC to re-
transmit data that was lost; was not satisfied by the satellite.

A reflexion represents the behaviors of an implementation in
respect to a given high-level model. One might not want to
specify a complete model of the behavioral design but focus
on certain scenarios. The high-level model in Figure 21 shows
a complete model for data transmission via CFDP. It also
includes a part in which lost data is re-transmitted.

While the re-transmission of data does not violate the
protocol specification, it is undesirable as it decreases the
performance of the SoS. Also, a re-transmission points out a
lack of reliability of the communication medium. Re-
transmissions can be analyzed by simply changing the high-
level model and comparing the behaviors against it. Figure 23
shows the high-level model that specifies the nominal
transmission behavior. The model assumes that all data is
transmitted without problems and no re-transmission is

necessary.
sd / sd /
MOoC MOC
Metadata Metadata
[[
| loop Filedata L 100p Filedata
EOF EOF
Ack(EOF) Ack(EOF)
FIN NAK (23) FileData (19) ®
FIN
Ack(FIN) Ack(FIN)

Figure 23: High-level model

Figure 24: Reflexion model
of the nominal interaction.

of the adherence to the
nominal interaction.

By checking the behaviors against the modified high-level
model, we derive a reflexion model that illustrates how often
the satellite is forced to re-transmit the data. Based on the
reflexion model, one can now analyze each behavior that
deviates from the nominal case. The reflexion model shows
that the MOC requested the re-transmission of data 23 times
using a NAK message. This case study shows how the same
behaviors can be analyzed from different viewpoints to
illuminate different aspects.

V. RELATED WORK

In the areas of reverse engineering and software testing,
several works have been published that are of relevance for
our research. The following elaborates on them.

A. Process Conformance

The study of processes and how they conform to a desired
process template is often a discussed issue. Given a process
specification, many approaches aim to compute metrics that
express the degree to which an observed process adheres to the
specification. Aalst et al. [1] have proposed an approach for
comparing event traces that were captured in log files to a
process specification defined via Petri Nets. The result of the
comparison is a metric that expresses the fitness and

59

appropriateness of the trace in respect to the specification.
Fitness describes how many events in a set of traces are
accepted by the specification. A specification is appropriate if
it describes the trace in the least general terms. Computation of
metrics that express the degree of conformance (or divergence)
between process and its specification is also presented by
Cook et al. [6]. The metrics that are computed with that
technique are closely related to the computation of costs in
approximate matching techniques. They express simple
distances between strings (i.e. how many modification
operations are necessary to produce one string from the other).
While metrics are useful to quantify process conformance, they
do not support the user in resolving concrete deviations.

Cook et al. [6] also provide a graphical user interface for
analyzing deviations between two event sequences. However,
it does not allow for comparing an observed event sequence to
a high-level specification, such as sequence diagrams or finite
state machines.

B. Testing

Testing approaches aim to identify concrete violations of an
implementation to adhere to a specification. Protocol testing
techniques are in particular concerned with detecting
violations of interaction behaviors to the specification [3].
Testing approaches determine whether the sequence is violated
and what that violation was. However, it is necessary to
illustrate all deviations in the context of the entire behavior in
order to reason about deviations and ultimately resolve them.

C. Reverse Engineering

Although the primary goal of reverse engineering
approaches is not to evaluate or verify a system, they share the
goal of supporting the user by representing information about
systems in a comprehensible manner. Ultimately, the
understanding gained through these techniques should help
users to solve issues in the system. Jerding et al. [8] have
presented an approach for recovering behavior traces in
multiple interconnected views. The approach by Briand et al.
[4] also visualizes traces but illustrates it in sequence diagram
notation including advanced sequencing constructs. Briand et
al. also point out the need for an approach to automatically
check whether a retrieved behavior is consistent with the
documentation.

VL. CONCLUSION

We have presented an approach for comparing the
behaviors of a SoS implementation to a high-level model and
computing reflexion models that show deviations between
them. This work presents a step towards architecture centric
analysis for behavioral characteristics. It is based on the
reflexion model approach as it has proven to be valuable for
analyzing software architectures and extends it to behavioral
characteristics since they play a central role in ensuring the
correctness and quality of SoS’. The case studies have shown
how our approach can be employed to analyze real-world
systems and identify behavioral issues.

10

Our current approach is limited in that it can only evaluate
the adherence to a limited set of sequencing constructs. In the
future, we will enhance the comparison to also handle other
sequencing constructs, such as parallelism, optional, etc.
Furthermore, other behavioral characteristics might have to be
taken into account when analyzing certain systems. For
instance, real-time systems require the timing of messages to
adhere to constraints to ensure the system’s correctness. We
are currently working on extending our approach to additional
behavior characteristics. Finally, we will evaluate the
applicability of our approach to system internal behaviors.

ACKNOWLEDGMENT

The authors wish to thank Lisa Montgomery and her NASA
IV&V SARP program team, as well as Sally Godfrey (NASA
GSFC) for supporting this work. We also would like to thank
Bill Stratton and Deane Sibol (JHU/APL) for successful
collaboration and valuable feedback. Finally, we extend our
gratitude to Christoph Schulze for his valuable contribution to
this work.

REFERENCES

[1] W.M.P.v.d. Aalst, M. Dumas, C. Ouyang, A. Rozinat, and E.
Verbeek, “Conformance Checking of Service Behavior,” ACM Trans.
Internet Technology, vol. 8, nr. 3, pp. 1-30, 2008.

[2] C. Ackermann, R. Cleaveland, M. Lindvall, “Recovering Views of Inter-
System Interaction Behaviors,” Working Conference on Reverse
Engineering (WCRE), 2009.

[3] G.V.Bochmann and A. Petrenko, “Protocol testing: review of methods
and relevance for software testing,” International symposium on
Software testing and analysis, ACM, New York, NY, USA, pp. 109-
124, 1994.

[4] L.Briand, Y. Labiche, and J. Leduc, “Toward the Reverse Engineering
of UML Sequence Diagrams for Distributed Java Software,” IEEE
Transaction of Software Engineering, vol. 32, nr. 9, pp. 642-663, 2006.

[5] Consultative Committee for Space Data Systems, “CCSDS File Delivery
Protocol (CFDP) Part 2: Implementers Guide,” 2007.

[6] J.Cook, A. Wolf, “Balboa: A framework for event-based process data
analysis,” ACM Trans. Softw. Eng. Methodol., vol. 7, nr. 3, pp. 215-
249, 1998.

[71 D. Gusfield, “Algorithms on Stings, Trees, and Sequences: Computer
Science and Computational Biology,” NY Cambridge University Press,
1997.

[8] D. Jerding, J. Stasko, T. Ball, “Visualizing Interactions in Program
Executions,” 19th International Conference on Software Engineering,
pp. 360-370, 1997.

[9] J. Knodel, M. Lindvall, D. Muthig, and M. Naab, “Static evaluation of
software architectures,” 10th European Conference on Software
Maintenance and Reengineering (CSMR), pp. 10, 2006.

[10] M. Lindvall, R. Tesoriero, and P. Costa, “Avoiding architectural
degeneration: an evaluation process for software architecture”, 8th IEEE
Symposium on Software Metrics (METRICS'02), pages 77-86, 2002.

[11] M. W. Maier, “Architecting Principles for Systems-of-Systems,”
International Journal of Software Engineering and Knowledge
Engineering, vol. 1, nr. 4, pp. 267-284, 1998.

[12] G. C. Murphy, D. Notkin, and K. Sullivan, "Software reflexion models:
bridging the gap between source and high-level models,” 3rd
Symposium on Foundations of Software Engineering”, ACM, New
York, NY, USA, pp. 18-28, 1995.

[13] E. Myers, and W. Miller, “Approximate matching of regular
expressions,” Bulletin of Mathematical Biology, vol. 51, nr. 1, pp. 5-37,
1989.

[14] R. N. Taylor, N. Medvidovi, L E. Dashofy, “Software Architecture:
Foundations, Theory, and Practice,” John Wiley & Sons, 2009.

